If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5v^2+5v-100=0
a = 5; b = 5; c = -100;
Δ = b2-4ac
Δ = 52-4·5·(-100)
Δ = 2025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2025}=45$$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-45}{2*5}=\frac{-50}{10} =-5 $$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+45}{2*5}=\frac{40}{10} =4 $
| χ²+8x+12=0 | | F(x)=2x*5-15x | | y/2.7+1.7=2.9 | | 39-3w=7 | | 5=5c-105 | | F(x)=2x-15x | | -4x*3(6x+2)=0 | | 7x+4=x–2 | | (10x+3)(2x-4)=(5x+2)(4x-8) | | 6x-5=4+9x | | -2/3x+1/4=1/4x+3 | | F(x)=x^2-64/x-1 | | -(x-2)(x-2)=11x-4 | | x-5=100/x | | 6x+12-2(x-2)=2x | | 7=6+h/4 | | 8t=5t+9 | | -3x+26=x+6 | | 10x+3/4x-8=5x+2/2x-4 | | 6x+12-2(x-2)=2 | | 25x^2+10x-5=0 | | X+19=4x+7 | | (4y-7)(5-Y)=0 | | 18z^2+49z+10=0 | | 3×+4y=12 | | 7x-2=-x+30 | | 14z^2-z-4=0 | | 9h^2+2h-1224=0 | | (x-5)^=144 | | -30=6x-12 | | F(x)=4x^2+4/2x^2+8 | | x^-4=0 |